Abstract

Dissolved sulfide in sediment porewater significantly influences aquatic ecosystems. Conventionally, sulfide determination in sediment porewater relies on ex-situ analytical methods, susceptible to measurement errors due to sulfide oxidation and volatilization during sample analysis. In this study, we introduced an innovative in-situ method for assessing dissolved sulfide in surface sediment porewater, leveraging the integration of diffusive gradients in thin films (DGT) with digital imaging. The DGT device effectively concentrates sulfide in sediment porewater, inducing observable color changes in the binding gel. Recordings of these changes, captured by imaging equipment, facilitated the establishment of calibration curves correlating grayscale value alterations in the binding gel to sulfide concentrations. Under optimal conditions, the developed method demonstrated a linear detection range of 3.0–200 μmol L−1 at 20 °C, particularly when the exposure time exceeded 180 min. The developed method is insensitive to salinity and suitable for measuring sulfide concentrations in various natural water environments. Compared to traditional ex-situ methods, our approach circumvents challenges linked to intricate pre-treatment, prolonged analysis duration, and significant systemic errors. This proposed method presents a real-time solution for sulfide concentration assessment in surface sediment porewater, empowering researchers with an efficient means to monitor and study dynamic sulfide levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.