Abstract

In-situ observation methods to investigate the physics involved in growth and dissolution processes of crystals in aqueous solution at ordinary temperature and pressure are described. The methods visualize insitu the phenomena relating to clustering of nanometer sized embryonic particles, the mass transport from bulk solution and from a crystal, the concentration gradient in the diffusion boundary layer and its distribution around a crystal, and spiral growth steps with height of one nanometer. The techniques measure at the nanometer scale the growth and dissolution rates of individual spiral growth hillocks and etch pits whose dislocation characters are identified in-situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.