Abstract

The temperature dependent structural phase transition from the tetragonal chalcopyrite like structure to the cubic sphalerite like structure in CuInSe2 was investigated by in-situ high temperature synchrotron radiation X-ray diffraction. The data were collected in 1K steps during heating and cooling cycles (rate 38 K/h). The Rietveld analysis of the diffractograms led us to determine the temperature dependence of the lattice parameters, including the tetragonal deformation, |1-η|, and distortion |u-¼| (η=c/2a, a and c are the tetragonal lattice constant; u is the anion x-coordinate). The thermal expansion coefficients αa and αc of the tetragonal lattice constant which are related to the linear thermal expansion coefficient αL were obtained, as were αa of the cubic lattice constant, also αu and αη. The transition temperature is clearly identified via a strong anomaly in αL. The temperature dependence of the anion position parameter was found to be rather weak, nearly αu∼0, whereas αη increases slightly. However, both increase strongly when approaching to within 10 K of the transition temperature (the critical region) and |1-η| as well as |u-¼| go to zero with |T-Ttrans|0.2 approaching the phase transition. The cation occupancy values, derived from the Rietveld analysis, remain constant below the critical region. Close to the transition temperature, the number of electrons at the Cu site increases with a dercrease in the number of electrons at the In site with increasing temperature, indicating a Cu-In anti site occupancy, which is assumed to be the driving force of the phase transition. At the transition temperature 67% of Cu+ were found to occupy the Me1 site with a corresponding 67% of In3+ at the Me2 site. Although full disorder is reached with 50%, this level seems to be high enough that the phase transition takes place. The order parameter of the phase transition, goes with |T-Ttrans|β to zero with the critical exponent β=0.35(7) which is in good agreement to the critical exponent β=0.332 calculated for order-disorder transitions according to the Ising model. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.