Abstract

Recently, metal oxides (MOs) have received tremendous interest for flexible energy storage systems: in particular, supercapacitors (SCs). SC electrodes are commonly fabricated via the coating of MOs particles, conductive carbon and binders. However, such electrodes, can weaken the performance of SCs. In this work, binder-free nanocluster Cr-doped NiO thin films are grown on flexible stainless-steel (SS) foils using a one-step co-sputtering technique. The distinctive nanocluster structure of Cr-incorporated NiO thin film electrodes (TFEs) has the benefit of reduced ion diffusion length and good charge transport, and can increase the accessibility of ions onto the active surface area. The developed TFEs are examined in 2 M KOH aqueous electrolyte, demonstrating highest areal capacitance of 429 mF cm−2 (251 mC cm−2). Subsequently, an asymmetric coin cell (ACC) SC is assembled. Even after 5,000 cycles, the developed ACC SC demonstrates exceptional cycling stability. Thereafter, the aging test is conducted after 720 h and reveals good electrochemical performance with minimal capacitance fading. Results reveal that Cr-doped NiO TFEs show excellent electrochemical performance with higher areal capacitance and stability compared to NiO and other metal oxide-based TFEs reported previously. The grown Cr-doped NiO binder-free TFEs are good candidates for high-performance and flexible energy storage systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.