Abstract

In this work, flower-like Au/Bi2O2CO3/Bi2O3 multi-heterojunction photocatalysts were prepared by a in-situ growth method. The as-prepared samples were characterized by different techniques including Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV–vis diffuse reflectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS), Photoluminescence (PL) and photo-induced current. The photocatalytic performance of the as prepared samples was evaluated by degradation of rhodamine B (RhB) under visible light (λ>400nm). Au/Bi2O2CO3/Bi2O3 exhibited much higher activity than pure Bi2O2CO3 or Bi2O2CO3/Bi2O3. The rate constant of best one Au/Bi2O2CO3/Bi2O3 sample is 100 and 14 times as that of pure Bi2O2CO3 and β-Bi2O3/Bi2O2CO3, respectively. The enhanced photocatalytic activity of Au/Bi2O2CO3/Bi2O3 can be ascribed to the surface plasmon resonance (SPR) effects of Au nanoparticles and the formed multi-heterojunctions, which enhanced the absorbance of visible light and facilitated the transferring and separation of photogenerated electron-hole pairs, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call