Abstract

Conventional air incineration of plastic waste has been considered as one of important sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) through de novo synthesis and precursor conversion. Chemical looping combustion (CLC) is an attractive technology for the conversion of plastic wastes to energy with the potential to drastically suppress the formation of PCDD/Fs. In this paper, the iG-CLC (in-situ gasification CLC) experiments of plastic waste were implemented in a semi-continuously operated fluidized bed reactor, which actually simulates the fuel reactor of a continuously-operated interconnected fluidized bed reactor. A kind of low-cost material, natural iron ore without/with 5 wt% CaO adsorbent through the ultrasonic impregnation method, was used as oxygen carrier (OC). Firstly, some key performances of the reactor system, such as the relevance of the bed inventory to the flow rate of fluidizing agent as well as the relationship between the feeding rate and overflow rate of OC, were calibrated. Then, 90 min of single experiment was conducted for each experimental case and an accumulative operation of more than 10 h was attained. Typically, the combustion efficiency can reach at about 98%, and both the carbon conversion and CO2 yield can approach to 95% at 900 °C and input thermal power of 150 W with a mixture of 5 vol% H2O and 95 vol% N2 as the fluidizing agent (UFR/Umf = 3). Moreover, the results obtained in the semi-continuously operated fluidized bed reactor demonstrated that CaO decoration to iron ore is conductive to suppressing the formation of chlorobenzene (as a toxic matter and precursor/intermediate of PCDD/Fs) and does not obviously deteriorate the OC performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.