Abstract

Photo-selective catalytic reduction of nitric oxide (NO) with methane (CH4) over TiO2 and Pt/TiO2 photocatalysts was studied at reaction temperatures of 25, 50, and 100 °C. The activity of Pt/TiO2 in NO reduction was better than that of TiO2. Conversion of NO by use of Pt/TiO2 and UV irradiation was up to 86.4 %. In-situ Fourier-transform infrared spectroscopy was successfully used to monitor the photoreaction process on TiO2 and Pt/TiO2 photocatalysts. During irradiation with UV light, bidentate nitrite disappeared and bidentate nitrate, monodentate nitrate, and isocyanate, an important intermediate, were generated. Adsorbed NH2 was found to be the final product of NO reduction after UV irradiation. We concluded that NO could be effectively reduced by CH4 under light irradiation at temperatures below 100 °C. A possible reaction mechanism is proposed on the basis of the intermediates and products generated by the photocatalyst under UV light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.