Abstract
ABSTRACTInfrared spectroscopy is a versatile tool that is well adapted to in-situ diagnostics of many thin film properties and processes. In this paper, we will describe the application of infrared instrumentation for real-time in-situ measurements of film temperature, emissivity, thickness, free carriers, and optical constants using model based spectral analysis. We will illustrate the use of Fourier transform infrared (FT-IR) emission and reflection spectroscopy to monitor the fabrication of stacks of ferroelectric and conductive oxides on silicon substrates during pulsed laser deposition. The ability to measure the infrared optical constants of dielectrics such as silicon dioxide, including the detailed spectral dependence of the vibrational absorption bands at high temperatures, will be presented. The suitability of the technique for real-time sensing during rapid thermal processing will be illustrated using the example of carrier activation during a shallow-junction rapid thermal anneal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: MRS Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.