Abstract

Transition metal selenides have gained enormous interest as anodes for sodium ion batteries (SIBs). Nonetheless, their large volume expansion causing poor rate and inferior cycle stability during Na+ insertion/extraction process hinders their further applications in SIBs. Herein, a confined-regulated interfacial engineering strategy towards the synthesis of FeSe microparticles coated by ultrathin nitrogen-doped carbon (NC) is demonstrated (FeSe@NC). The strong interfacial interaction between FeSeand NC endows FeSe@NC with fast electron/Na+ transport kinetics and outstanding structural stability, delivering unexceptionable rate capability (364 mAh/gat 10 A/g) and preeminent cycling durability (capacity retention of 100 % at 1 A/g over 1000 cycles). Furthermore, variousex situcharacterization techniques and density functional theory (DFT) calculations have been applied to demonstrate the Na+ storage mechanism of FeSe@NC. The assembled Na3V2(PO4)2F3@rGO//FeSe@NC full cell also displays a high capacity of 241 mAh/gat 1 A/g with the capacity retention of nearly 100 % over 2000 cycles, and delivers a supreme energy density of 135 Wh kg−1 and a topmost power density of 495 W kg−1, manifesting the latent applications of FeSe@NC in the fast charging SIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call