Abstract

The electrochemical transformation of biomass to high value-added products is attractive. Herein, Cu sulfide-mediated in-situ synthesis of Cu oxide was achieved for efficient electro-oxidation of biomass derived 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). The copper foam-supported Cu sulfide (Cu-S/CF) was in-situ converted to Cu oxide during the electro-oxidation process. The in-situ formed Cu oxide presented high HMF conversion, FDCA yield, and faradaic efficiency in 1 m KOH with HMF concentration up to 100 mm. The oxidation of HMF on Cu oxide started with the formation of high-valence Cu species with the assistance of OH- , which then oxidized HMF spontaneously. An anion exchange membrane (AEM) electrolyzer with Cu-S/CF as the anode was assembled to continuously produce FDCA with H2 generation at the cathode. The AEM electrolyzer ran stably for 60 h with FDCA content higher than 85 % at a cell voltage between 1.50 and 1.60 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.