Abstract
High-power white light-emitting diodes (LEDs) have demonstrated superior efficiency and reliability compared to traditional white light sources. However, ensuring maximum performance for a prolonged lifetime use presents a significant challenge for manufacturers and end users, especially in safety–critical applications. Thus, identifying functional anomalies and predicting the remaining useful lifetime (RUL) is of enormous importance in the operational longevity of the device. To address such challenges, this study proposes a combination of distance-based Mahalanobis distance (MD), entropy generation rate (EGR), and deep learning models for improved anomaly detection and RUL prediction accuracy. Unlike conventional health indicators based on luminous flux data that are challenging to monitor relevant optical performance, the MD and EGR methods are employed to extract in-situ monitored thermal and electrical data as new health indicators. Long short-term memory recurrent neural networks (LSTM-RNN) and convolutional neural networks (CNN) are established to detect anomalies and predict the RUL. The accelerated degradation tests of 3 W high-power white LED have been conducted, and the online and offline collected experimental data are deployed for model development and performance evaluation. The performance of the proposed methods is compared against the Illuminating Engineering Society of North America (IESNA) TM-21 method. The results indicate that LSTM-RNN, when combined with either MD or EGR, can detect anomalies with significantly fewer data (70 %) than is typically required. Furthermore, a significant improvement in prediction accuracy in RUL prediction based on MD and EGR-constructed time series health indicators and employed with the LSTM-RNN model demonstrates the effectiveness of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.