Abstract

We report a mechanistic DRIFTS in-situ study of NO2, NO+O2 and NO adsorption on a commercial Cu-CHA catalyst for NH3-SCR of NOx. Both pre-reduced and pre-oxidized catalyst samples were investigated with the aim of clarifying mechanistic aspects of the NO oxidation to NO2 as a preliminary step towards the study of the Standard SCR reaction mechanism at low temperatures. Nitrosonium cations (NO+, N formal oxidation state=+3) were identified as key surface intermediates in the process of NO (+2) oxidation to NO2 (+4) and nitrates (+5). While NO+ and nitrates were formed simultaneously upon catalyst exposure to NO2, nitrates evolved consecutively to NO+ when the catalyst was exposed to NO+O2, suggesting that nitrite-like species, and not NO2, are formed as the primary products of the NO oxidative activation over Cu-CHA. Upon catalyst exposure to NO only, i.e. in the absence of gaseous O2, NO+ and then nitrates were formed on a pre-oxidized sample but not on a pre-reduced one, which demonstrates the red-ox nature of the NO oxidation mechanism. The negative effect of H2O on NO+ and nitrates formation was also clearly established. Assuming Cu dimers as the active sites for NO oxidation to NO2, we propose a mechanism which reconciles all the experimental observations. In particular, we show that such a mechanism also explains the observed kinetic effects of H2O, O2 and NO2 on the NO oxidation activity of the investigated Cu zeolite catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call