Abstract

Real-time in-situ detection of pathogenic bacteria on fresh food surfaces was accomplished with phage-based magnetoelastic (ME) biosensors. The ME biosensor is constructed of a small rectangular strip of ME material that is coated with a biomolecular recognition element (phage, antibodies or proteins, etc.) that is specific to the target pathogen. This mass-sensitive ME biosensor is wirelessly actuated into mechanical resonance by an externally applied time-varying magnetic field. When the biosensor binds with target bacteria, the mass of the sensor increases, resulting in a decrease in the sensor's resonant frequency. In order to compensate for nonspecific binding, control biosensors without phage were used in this experiment. In previous research, the biosensors were measured one by one. However, the simultaneous measurement of multiple sensors was accomplished in this research, and promises to greatly shorten the analysis time for bacterial detection. Additionally, the use of multiple biosensors enables the possibility of simultaneous detection of different pathogenic bacteria. This paper presents results of experiments in which multiple phage-based ME biosensors were simultaneously monitored. The E2 phage and JRB7 phage from a landscape phage library served as the bio-recognition element that have the capability of binding specifically with Salmonella typhimurium and B. anthracis spores, respectively. Real-time in-situ detection of Salmonella typhimurium and B. anthracis spores on food surfaces are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.