Abstract

AbstractClinching is a well-established joining technology, e.g. in automotive production, because of its cost-efficiency and the ability to join different materials at low cycle times. Nowadays, a detailed quality inspection of clinch points is usually carried out ex-situ, e.g. via macroscopic examination after joining. However, only 2D-snapshots of the complex three-dimensional and time-dependent forming and damaging phenomena can be made. The closing of cracks and the resetting of elastic deformations due to unloading and specimen preparation are also disadvantageous. In contrast, the use of non-destructive in-situ testing methods enables a deeper insight into the joint deformation and failure phenomena under specific load conditions. In this paper, progressive damage is observed during the single-lap shear testing of a clinch point using in-situ computed tomography (CT) and transient dynamic analysis (TDA). The TDA can continuously monitor the characteristic dynamic response of the joint, which is sensitive to damage and process deviations. In-situ CT creates 3D images of the inner structure of the clinch point at specific process steps. In this work, the sensitivity of both testing methods to detect damage in joints with EN AW 6014 and glass fibre reinforced polypropylene (GF-PP) is evaluated. As a reference, joints with both joining partners made of aluminium alloy (EN AW 6014) are analyzed. It is shown, that TDA and in-situ CT has the potential to identify joint quality as well as critical processing times.KeywordsComputed tomographyActive acoustic testingClinching

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.