Abstract

Alkaline fermentation of waste activated sludge (WAS) to produce short-chain fatty acids (SCFAs) has been proved to be promising to develop internal carbon source for denitrifying processes in municipal wastewater treatment plants. However, a large amount of ammoniacal nitrogen also releases during fermentation, resulting in inhibition of acidogenic process and reduction of carbon source availability. Alkaline fermentation of WAS combined with in-situ ammonia stripping was proposed to improve SCFAs production and carbon source availability simultaneously. The results showed that a maximal SCFAs production of 308.7 ± 4.8 mg chemical oxygen demand/g volatile suspended solid was achieved under the pH = 10 + In-situ ammonia stripping, which was 21.7% and 141.5% higher than that of the pH = 10 and the control, respectively. Most of the ammoniacal nitrogen was stripped out, and the WAS-derived SCFAs availability as carbon source increased by 103.2%. These findings indicate in-situ ammonia stripping could make alkaline fermentation of WAS more practical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call