Abstract

High-energy X-ray diffraction (HEXD) experiments, which include real-time measurements of micromechanical material response using in-situ loading and the non-destructive creation of three-dimensional maps of polycrystalline microstructure, are very rapidly replacing traditional macroscopic mechanical tests and forensic metallurgical characterization methods for structural materials. The center for Integrated Simulation and X-ray Interrogation Tools and Training for Micromechanics at the Cornell High Energy Synchrotron Source (InSitμ@CHESS) was created to facilitate the use of HEXD experiments on structural materials; more notably, metallic alloys such as steel, titanium, aluminum, and nickel. The Office of Naval Research (ONR) has financially supported InSitμ, specifically enabling enhanced industrial user support. This article describes the experimental considerations associated with using HEXD on structural materials and, through a set of examples, illustrates how InSitμ addresses these considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.