Abstract

Iron (Fe) and Zinc (Zn) are the key elements required for many of the biological process in plants and animals. Transporter proteins are essential for uptake, transport and accumulation for Fe and Zn in plants. The present investigation was undertaken to study and compare the structural and functional diversity and evolutionary significance of the yellow stripe-like (YSL) transporters through in-silico tools in five species (barley, Brachypodium, foxtail millet, maize and rice) of Poaceae. One hundred and two YSL transporters collected from public databases were used in the analysis. All YSL transporters possessed PF03169 domain which belongs to the oligo peptide transporters (OPT) super family. Molecular weight of YSL proteins ranged from 11.10 to 84.70 kDa while pI values ranged from 4.99 to 11.64. Scondary structure analysis identified that, alpha helix and random coils were the most common structures of the YSL proteins. Phylogenetic analysis revealed that the YSL transporters are highly conserved in these five grass species. Comparative mapping of genes of YSL transporters showed maximum synteny between Brachypodium and barley (30%) followed by Brachypodium and rice (25%). Neutrality test has in fact revealed the positive or Darwinian selection on YSL transporters. The results of the present investigation provided a significant understanding of the structural and biological role of YSL transporters as well as the evolutionary pattern in Poaceae family.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call