Abstract
BackgroundThe respiratory tract of swine is colonized by several bacteria among which are three Mycoplasma species: Mycoplasma flocculare, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis. While colonization by M. flocculare is virtually asymptomatic, M. hyopneumoniae is the causative agent of enzootic pneumonia and M. hyorhinis is present in cases of pneumonia, polyserositis and arthritis. The genomic resemblance among these three Mycoplasma species combined with their different levels of pathogenicity is an indication that they have unknown mechanisms of virulence and differential expression, as for most mycoplasmas.MethodsIn this work, we performed whole-genome metabolic network reconstructions for these three mycoplasmas. Cultivation tests and metabolomic experiments through nuclear magnetic resonance spectroscopy (NMR) were also performed to acquire experimental data and further refine the models reconstructed in silico.ResultsEven though the refined models have similar metabolic capabilities, interesting differences include a wider range of carbohydrate uptake in M. hyorhinis, which in turn may also explain why this species is a widely contaminant in cell cultures. In addition, the myo-inositol catabolism is exclusive to M. hyopneumoniae and may be an important trait for virulence. However, the most important difference seems to be related to glycerol conversion to dihydroxyacetone-phosphate, which produces toxic hydrogen peroxide. This activity, missing only in M. flocculare, may be directly involved in cytotoxicity, as already described for two lung pathogenic mycoplasmas, namely Mycoplasma pneumoniae in human and Mycoplasma mycoides subsp. mycoides in ruminants. Metabolomic data suggest that even though these mycoplasmas are extremely similar in terms of genome and metabolism, distinct products and reaction rates may be the result of differential expression throughout the species.ConclusionsWe were able to infer from the reconstructed networks that the lack of pathogenicity of M. flocculare if compared to the highly pathogenic M. hyopneumoniae may be related to its incapacity to produce cytotoxic hydrogen peroxide. Moreover, the ability of M. hyorhinis to grow in diverse sites and even in different hosts may be a reflection of its enhanced and wider carbohydrate uptake. Altogether, the metabolic differences highlighted in silico and in vitro provide important insights to the different levels of pathogenicity observed in each of the studied species.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2644-z) contains supplementary material, which is available to authorized users.
Highlights
The respiratory tract of swine is colonized by several bacteria among which are three Mycoplasma species: Mycoplasma flocculare, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis
Even though many species are related to Porcine Respiratory Disease Complex (PRDC), it is essential to note that enzootic pneumonia caused by M. hyopneumoniae is by far the most costly disease in pig industry, and this bacteria is usually seen as an essential component to the successful establishment of a pathogenic community in the host [12]
From initially 157 dead-end metabolites (DEM), 124 disconnected metabolites were excluded from the models: 14 DEMs came from 7 spontaneous reactions; 59 were carbohydrate substrates derived from wide range transport reactions and were not used by any other reaction in the network; 51 were excluded as they did not interfere with the overall metabolism and/or the enzyme had already been assigned to one or many other reactions
Summary
The respiratory tract of swine is colonized by several bacteria among which are three Mycoplasma species: Mycoplasma flocculare, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis. Enzootic pneumonia, caused by M. hyopneumoniae, is widespread in pig populations and is considered a major cause of economic loss in the pig industry [8]; M. hyorhinis is frequently present in cases of polyserositis and arthritis and M. flocculare has high prevalence in swine herds worldwide, but up to date, no disease has been per se associated with this species [7]. In addition to these mycoplasmas, Mycoplasma hyosynoviae, the primary agent of non-purulent arthritis, can occasionally colonize in the lower respiratory tract when pneumonic lesions pre-exist [9]. M. hyopneumoniae infections take longer to cause lesions and to be successfully eliminated than infections from other pathogens [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.