Abstract
Several types of biodegradable materials have been investigated for the treatment of osteomyelitis. Calcium phosphate (CaP) ceramics are among the most performing materials due to their resemblance to human hard tissues in terms of mineralogical composition, and proven ability to adsorb and deliver a number of drugs. This research work was intended to study the suitability of modified CaP powders loaded with a fluoroquinolone as drug delivery systems for osteomyelitis treatment. Levofloxacin (LEV) was chosen due to the well-recognized anti-staphylococcal activity and adequate penetration into osteoarticular tissues. Substituted CaP powders (5mol% Sr(2+) or 5mol% Mg(2+)) were synthesised through aqueous precipitation. The obtained powders were characterised by X-ray diffraction, SEM and FTIR analysis. The X-ray diffraction patterns confirmed the presence of HA and β-tricalcium phosphates (β-TCP) phases in doped compositions, especially in the case of Mg-doped system. The fixation of LEV at the surface of the particles occurred only by physisorption. Both the in vitro microbiological susceptibility, against Staphylococcus spp, and biocompatibility of LEV-loaded CaP powders have not been compromised.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.