Abstract

The dielectric spectra of most simple liquids are characterized by two relaxation processes: (i) the alpha-process, an intense, broad non-Debye relaxation with a non-Arrhenius temperature dependence and (ii) a beta process, evident mainly below the glass transition and having nearly Arrhenius temperature behavior. However, the dielectric spectra of monoalcohols show three processes: two that resemble those of normal liquids and a third very intense Debye peak at lower frequencies, which is non-Arrhenius. Interestingly, this third process is not observed with other techniques such as light scattering and mechanical spectroscopy. There is a disagreement in the literature concerning the nature of this third relaxation. We investigated 2-ethyl-1-hexanol under high pressures (up to approximately 1.4 GPa) over a broad range of temperatures. The Debye process, which is the slowest, is strongly affected by pressure. At higher pressures the relaxation times and intensities of the two non-Arrhenius relaxations become more nearly equal. In light of these results, we propose a modified interpretation of the relaxation processes and their underlying structures in monoalcohols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.