Abstract

The origin of enzyme catalysis remains a question of debate despite much intense study. We report a QM/MM theoretical study of the SN2 methyl transfer reaction catalyzed by a glycine N-methyltransferase (GNMT) and three mutants to test whether recent experimental observations of rate-constant reductions and variations in inverse secondary α-3H kinetic isotope effects (KIEs) should be attributed to changes in the methyl donor-acceptor distance (DAD): Is catalysis due to a compression effect? Semiempirical (AM1) and DFT (M06-2X) methods were used to describe the QM subset of atoms, while OPLS-AA and TIP3P classical force fields were used for the protein and water molecules, respectively. The computed activation free energies and KIEs are in good agreement with experimental data, but the mutations do not meaningfully affect the DAD: Compression cannot explain the experimental variations on KIEs. On the contrary, electrostatic properties in the active site correlate with the catalytic activity of wild type and mutants. The plasticity of the enzyme moderates the effects of the mutations, explaining the rather small degree of variation in KIEs and reactivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.