Abstract

The binding and release behavior of flaxseed proteins to aldehydes is significant for the sensory properties of flaxseed foods. The key aldehydes of flaxseed were selected by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and odor activity value (OAV) method, and the interaction between flaxseed protein and flaxseed protein was investigated by multispectral, molecular docking, molecular dynamics simulation, and particle size techniques. The results showed that 2,4-decadienal presented a higher binding capability and a higher Stern-Volmer constant with flaxseed protein than pentanal, benzaldehyde, and decanal. Thermodynamic analysis revealed that hydrogen bonding and hydrophobic interactions were the main forces. Aldehydes contributed to a certain reduction in radius of gyration (Rg) value and α-helix content of flaxseed protein. In addition, the results of particle size showed that aldehydes caused the proteins to aggregate toward larger particles. This study could provide new insights into the interactions between flaxseed food and flavor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call