Abstract
Traditionally, ferritin has been considered a photocatalyst capable of photo-oxidizing organic molecules and transferring electrons to external electron acceptors when irradiated by UV-visible light. We have designed new approaches to resolve the uncertainties regarding its photocatalytical mechanism. Experiments with an Fe(II) chelator, an electrochromic indicator, and recombinant ferritin proteins indicate that the excited electrons at the conduction band of the ferritin core do not cross the protein shell. Instead, irradiation causes the electrons to reduce the ferrihydrite core to produce Fe(II) ions. These Fe(II) ions exit the protein shell to reduce electron acceptors. In the absence of electron acceptors or chelators, Fe(II) re-enters ferritin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.