Abstract
Benefiting from the low cost, high safety and environmentally friendly characteristics, aqueous second zinc ion batteries (AZIBs) have attracted wide attention. The electrochemical performance of the AZIBs is highly influenced by cathode materials. Mn-based compounds are deemed as promising cathode materials for AZIBs because of their various crystal structures and three-dimensional spatial frameworks. However, the diversity in crystal structure and chemical constituent for Mn-based compounds lead to a distinction of energy storage mechanisms, which engenders tremendous discrepancy in electrochemical properties. Herein, a state-of-the-art review of the rational construction of high-performance Mn-based cathodes of AZIBs is presented. Firstly, the energy storage mechanisms of Mn-based cathodes are systematically clarified. Accordingly, the reasonable strategies including morphology design, surface modification, defect engineering, structure modulation are comprehensively summarized. At last, the challenges, future developments, and prospects of Mn-based materials for AZIBs are prospected. This review provides an important understanding for the design and optimization of high-performance Mn-based cathodes materials, which can be expected to shed light on the future development of stable Mn-based cathodes toward high-performance AZIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.