Abstract

Microbial fuel cells (MFCs) have emerged as a promising technology for energy-efficient wastewater treatment. The feasibility of integrating biological nitrogen removal into MFC systems has been reported. However, better pollutant removal efficiency and power production need to be achieved at a lower cost for a sustainable wastewater treatment system. The objective of this paper is to critically review the nitrogen removal process in various MFC configurations, factors that influence this process, and challenges that should be overcome in future studies. Based on the results of the review, shortcut nitrification-autotrophic denitrification in an MFC is an option as it minimizes the aeration energy and C/N ratio requirement; however, it is necessary to evaluate the N2O emission further. Another attractive option is the heterotrophic anodic denitrification process as it demonstrates the potential for free-buffer MFCs, but the nitrogen removal efficiency at low C/N ratios needs improvement. Bacteria population in MFC system also plays an essential role in both contaminant removal and electricity generation. It can be concluded that MFCs can be a low cost, sustainable solution for the treatment of wastewater and removal of nitrogen. Moreover, selection of MFC configuration will depend on the nature of the wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call