Abstract

Cytochrome P450s are an important group of enzymes catalyzing hydroxylation, and epoxidations reactions. In this work we describe the characterization of the CinA-CinC fusion enzyme system of a previously reported P450 using genetically fused heme (CinA) and FMN (CinC) enzyme domains from Citrobacter braaki. We observed that mixing individually inactivated heme (-) with FMN (-) domain in the CinA-10aa linker - CinC fusion constructs results in recovered activity and the formation of (2S)-2β-hydroxy,1,8-cineole (174µM), a similar amount when compared to the fully functional fusion protein (176µM). We also studied the effect of the fusion linker length in the activity complementation assay. Our results suggests an intermolecular interaction between heme and FMN parts from different CinA-CinC fusion protein similar to proposed mechanisms for P450 BM3 on the other hand, linker length plays a crucial influence on the activity of the fusion constructs. However, complementation assays show that inactive constructs with shorter linker lengths have functional subunits, and that the lack of activity might be due to incorrect interaction between fused enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call