Abstract
The ramped temperature oxidation (RTO) test is a screening method used to assess the stability of a reservoir for air-injection Enhanced Oil Recovery (EOR) and to evaluate the oxidation behavior of oil samples. It provides valuable kinetic data for specific cases. The RTO test allows for the analysis of various characteristics, such as temperature evolution, peak temperatures, oxygen uptake, carbon dioxide generation, oxidation and combustion front velocity, recovered and burned hydrocarbons, and residual coke. The adaptation of RTO experiments to in situ combustion (ISC) modeling involves validation and history matching based on numerical simulation of RTO tests, using 3D digital models of experimental setup. The objective is to estimate the kinetic parameters for a customized reaction model that accurately represents ISC. Within this research, the RTO test was provided for bitumen samples related to the Samara oil region. A 3D digital model of the RTO test is constructed using CMG STARS, a thermal hydrodynamic simulator. The model is designed with multiple layers and appropriate heating regimes to account for uncertainties in the experimental setup and to validate the numerical model. The insulation of the setup affects radial heat transfers and helps to control the observed temperature levels. The modified traditional reaction model incorporates thermal cracking of Asphaltenes, low-temperature oxidation (LTO) of Asphaltenes and Maltenes, and high-temperature combustion of coke. Additionally, the model incorporates high-temperature combustion of light oil in the vapor phase, which is generated through Asphaltenes cracking and LTO reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.