Abstract

The properties of carbon, boron nitride, silicon, germanium, and molybdenum disulfide nanotubes in reline (cholinium chloride + urea) deep eutectic solvents were studied by using classical molecular dynamics simulations. These nanotubes + reline nanofluids provide a suitable platform for the development of sustainable thermal engineering applications. The reported results lead to the characterization of nanotube solvation and reline layering around the nanotube surfaces as well as the behavior of reline upon confinement inside the considered nanotube cavities. Changes in reline hydrogen bonding in the presence of the nanotubes are also analyzed and related with the development of stable nanotube dispersions, thus showing reline as a suitable vehicle for nanotubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call