Abstract

The sidestream sludge treatment by free ammonium (FA)/free nitrous acid (FNA) dosing was frequently demonstrated to maintain the nitrite pathway for the partial nitrification (PN) process. Nevertheless, the inhibitory effect of FA and FNA would severely influence polyphosphate accumulating organisms (PAOs), destroying the microbe-based phosphorus (P) removal. Therefore, a strategic evaluation was proposed to successfully achieve biological P removal with a partial nitrification process in a single sludge system by sidestream FA and FNA dosing. Through the long-term operation of 500 days, excellent phosphorus, ammonium and total nitrogen removal performance were achieved at 97.5 ± 2.6 %, 99.1 ± 1.0 % and 75.5 ± 0.4 %, respectively. Stable partial nitrification with a nitrite accumulation ratio (NAR) of 94.1 ± 3.4 was attained. The batch tests also reported the robust aerobic phosphorus uptake based on FA and FNA adapted sludge after exposure of FA and FNA, respectively, suggesting the FA and FNA treatment strategy could potentially offer the opportunity for the selection of PAOs, which synchronously have the tolerance to FA and FNA. Microbial community analysis suggested that Accumulibacter, Tetrasphaera, and Comamonadaceae collectively contributed to the phosphorus removal in this system. Summarily, the proposed work presents a novel and feasible strategy to integrate enhanced biological phosphorus removal (EBPR) and short-cut nitrogen cycling and bring the combined mainstream phosphorus removal and partial nitrification process closer to practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call