Abstract

AbstractAqueous zinc‐ion batteries (ZIBs) with metallic Zn anodes have emerged as promising candidates for large‐scale energy storage systems due to their inherent safety and competitive capacity. However, challenges of Zn anodes, including dendrite growth and side reactions, impede the commercialization of ZIBs. The regulation of the Zn/electrolyte interphase is a feasible method to achieve high‐performance ZIBs with prolonged lifespan and high reversibility. Considering the as‐made artificial interphase is the result of a combination of protection materials, protection mechanisms, and construction techniques, this review comprehensively summarizes the recent progress of interphase modulation and provides a systematic guideline for constructing ideal artificial layers. In addition to revealing the entanglement relationship between the failure behaviors of Zn anodes and timely concluding the emerging protection mechanisms for stable Zn/electrolyte interphase, this review also evaluates the constructing techniques in regard of commercialization, including engineering workflow, strength, shortcoming, applicable materials, and protection effect, aiming to pave the way to practical application. Finally, this review presents noteworthy points of ideal artificial layer. It is expected that this review can enlighten researchers to not only explore ideal interphases of Zn anodes for practical application, but also design other metal anodes in aqueous batteries with similar failure behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.