Abstract
Our present work studies the structure-based pharmacophore modeling and designing inhibitor against Gal3 receptor through molecular dynamics (MD) simulations extensively. Pharmacophore models play a key role in computer-aided drug discovery like in the case of virtual screening of chemical databases, de novo drug design and lead optimization. Structure-based methods for developing pharmacophore models are important, and there have been a number of studies combining such methods with the use of MD simulations to model protein’s flexibility. The two potential antagonists SNAP 37889 and SNAP 398299 were docked and simulated for 250 ns and the results are analyzed and carried for the structure-based pharmacophore studies. This helped in identification of the subtype selectivity of the binding sites of the Gal3 receptor. Our work mainly focuses on identifying these binding site residues and to design more potent inhibitors compared to the previously available inhibitors through pharmacophore models. The study provides crucial insight into the binding site residues Ala2, Asp3, Ala4, Gln5, Phe24, Gln79, Ala80, Ile82, Tyr83, Trp88, His99, Ile102, Tyr103, Met106, Tyr157, Tyr161, Pro174, Trp176, Arg181, Ala183, Leu184, Asp185, Thr188, Trp248, His251, His252, Ile255, Leu256, Phe258, Trp259, Tyr270, Arg273, Leu274 and His277, which plays a significant role in the conformational changes of the receptor and helps to understand the inhibition mechanism. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.