Abstract

Three Pd(II) complexes of Schiff bases such as 2-((6-chloro-4-oxo-4H-chromen-3-yl)methyleneamino)-1H-imidazole-5(4H)-one (L1), 2-((1H-indol-3-yl)methyleneamino)-1H imidazole-5(4H)-one (L2) & 2-(thiophen-2-ylmethyleneamino)-1H-imidazole-5(4H)-one (L3) have been synthesized and characterized by analytical and spectroscopic techniques like, 1H and 13C NMR, IR, UV–Vis. ESI-Mass etc. The anti-diabetic activities of both ligands and complexes were examined by α-amylase and α-glucosidase assay using acarbose as standard drug. As a result the complexes (L1)2Pd and (L2)2Pd exhibited a strong inhibition against α-amylase (IC50 ​= ​136.0 ​μg/ml and 167.8 ​μg/ml) and α-glucosidase (IC50 ​= ​97.34 ​μg/ml and 128.5 ​μg/ml) respectively. The molecular energy levels calculation were performed by Gaussian 09 program by Density Functional Theory (DFT) using B3LYP/6-31G∗ basis set. Molecular docking disquisition was carried out using Molecular operation environment software (MOE) indicate as finest positioned in the essential sites of receptor having docking scores −6.96 and −7.72 respectively for (L2)2Pd and (L3)2Pd. ADME predictions also carried for the compounds L1, L2 and L3. All the ligands were obeyed the Lipinski's rule of five and also in the acceptable range. By using the Agar well diffusion method, the antibacterial and antifungal properties of the label compounds were investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.