Abstract

AbstractThe acyclic o‐oxygen benzyl carbocation 1, the 6‐membered‐ring endocyclic o‐oxygen benzyl carbocation 2, and the 5‐membered‐ring endocyclic o‐oxygen benzyl carbocation 3 were used as model compounds to get insights into the general phenomenon for the unusual stability of the 5‐membered‐ring endocyclic benzyl carbocations in aqueous solution. The hydride‐ion affinities of 1, 2, and 3 in gas phase, acetonitrile, and DMSO were calculated and compared by the density functional theory method, and 3 isodesmic reactions were designed to confirm their thermodynamic stability. What we found is that the 5‐membered‐ring endocyclic o‐oxygen stabilizes the benzyl carbocation 3 less than the acyclic o‐oxygen stabilizes the benzyl carbocation 1 in gas phase because of ring strain and through‐bond induction. However, the high solvation energies of the 5‐membered‐ring endocyclic o‐oxygen benzyl carbocation 3 not only offset the destabilizing effects of ring strain and through‐bond induction but also make it even more stable than the acyclic o‐oxygen benzyl carbocation 1 in polar solvents like acetonitrile, DMSO, and water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.