Abstract

Type IV pili are surface organelles essential for pathogenicity of many Gram-negative bacteria. In Neisseria gonorrhoeae, the major subunit of type IV pili, PilE, is a target of its general O-linked glycosylation system. This system modifies a diverse set of periplasmic and extracellular gonococcal proteins with a variable set of glycans. Here we show that expression of a particular hexa-histidine-tagged PilE was associated with growth arrest. By studying intra- and extragenic suppressors, we found that this phenotype was dependent on pilus assembly and retraction. Based on these results, we developed a sensitive tool to identify factors with subtle effects on pilus dynamics. Using this approach, we found that glycan chain length has differential effects on the growth arrest that appears to be mediated at the level of pilin subunit-subunit interactions and bidirectional remodelling of pilin between its membrane-associated and assembled states. Gonococcal pilin glycosylation thus plays both an intracellular role in pilus dynamics and potential extracellular roles mediated through type IV pili. In addition to demonstrating the effect of glycosylation on pilus dynamics, the study provides a new way of identifying factors with less dramatic effects on processes involved in type IV pilus biogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.