Abstract

To investigate the role of alpha helices in protein thermostability, we compared energy characteristics of alpha helices from thermophilic and mesophilic proteins belonging to four protein families of known three-dimensional structure, for at least one member of each family. The changes in intrinsic free energy of alpha-helix formation were estimated using the statistical mechanical theory for describing helix/coil transitions in peptide helices [Munoz, V., Serrano, L. Nature Struc. Biol. 1:399-409, 1994; Munoz, V., Serrano, L. J. Mol. Biol. 245:275-296, 1995; Munoz, V., Serrano, L. J. Mol. Biol. 245:297-308, 1995]. Based on known sequences of mesophilic and thermophilic RecA proteins we found that (1) a high stability of alpha helices is necessary but is not a sufficient condition for thermostability of RecA proteins, (2) the total helix stability, rather than that of individual helices, is the factor determining protein thermostability, and (3) two facets of intrahelical interactions, the intrinsic helical propensities of amino acids and the side chain-side chain interactions, are the main contributors to protein thermostability. Similar analysis applied to families of L-lactate dehydrogenases, seryl-tRNA synthetases, and aspartate amino transferases led us to conclude that an enhanced total stability of alpha helices is a general feature of many thermophilic proteins. The magnitude of the observed decrease in intrinsic free energy on alpha-helix formation of several thermoresistant proteins was found to be sufficient to explain the experimentally determined increase of their thermostability. Free energies of intrahelical interactions of different RecA proteins calculated at three temperatures that are thought to be close to its normal environmental conditions were found to be approximately equal. This indicates that certain flexibility of RecA protein structure is an essential factor for protein function. All RecA proteins analyzed fell into three temperature-dependent classes of similar alpha-helix stability (delta G(int) = 45.0 +/- 2.0 kcal/mol). These classes were consistent with the natural origin of the proteins. Based on the sequences of protein alpha helices with optimized arrangement of stabilizing interactions, a natural reserve of RecA protein thermoresistance was estimated to be sufficient for conformational stability of the protein at nearly 200 degrees C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.