Abstract

Understanding the translational and rotational dynamics of cations and anions in hydrogen bonded protic ionic liquids (PIls) is still a challenge. In this study, we determine self-diffusion coefficients and rotational correlation times of both ions in triethylammonium based PILs by means of NMR Fast-Field-Cycling (FFC) relaxometry. Global fits of 1H and 19F nuclear magnetic relaxation dispersion (NMRD) curves allowed proper separation into intra and inter molecular relaxation rates for both NMR sensitive nuclei and thus a reliable description of translational and rotational motion for both ions individually. The diffusion coefficients of the cations are in the order of 6 × 10-11 m2 s-1 at room temperature and about 50 per cent larger than those of the anions. The diffusion coefficients of cations and anions in both PILs were compared with those we derived from applying an universal dispersion power law and those known from pulsed field gradient (PFG) NMR studies. Considering the Nernst-Einstein equation, molar conductivities were calculated from cationic and anionic diffusion coefficients and related to directly measured molar conductivities, allowing the determination of the degree of dissociation. The rotational correlation times τR ranging from 50 ps up to 2 ns as a function of temperature were compared with those obtained from high-field NMR quadrupolar relaxation time measurements addressing explicitly the rotation of the NH vector and giving insights into the acidic proton mobility. The Stokes-Einstein and Stokes-Einstein-Debye relations were applied to relate the diffusion coefficients and rotational correlation times to the macroscopic bulk viscosity. The results were also discussed with respect to the archetypical PIL ethylammonium nitrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.