Abstract
Due to the sodium abundance and availability, sodium-ion batteries (SIBs) have the potential to meet the worldwide growing demand of electrical energy storage. P2-type sodium transition-metal layer oxides with a high energy density are considered as the most promising cathode materials for SIBs. We present here a detailed study of the enhanced rate capability and cyclic stability of the Ti-doped Na0.67Ni0.33Mn0.67O2 cathode material. The combined analysis of ex-situ X-ray absorption fine structure (XAFS) spectroscopy, aberration-corrected high resolution transmission electron microscopy (AB-HRTEM) and X-ray diffraction (XRD) show that the strong Ti–O bond in the transition metal layers stabilizes the local structure, destroy the Na+-vacancy ordering and arrest the irreversible multiphase transformation that occurs during the intercalation/deintercalation process. Actually, Na0.67Ni0.33Mn0.52Ti0.15O2 exhibits a reversible capacity of 89.6 mA h g−1 even at 5 C, an excellent cyclability with 88.78 % capacity retention after 200 cycles at 0.5 C. This study provides a better understanding in optimization of the design of high-energy cathode materials based on titanium doped layered oxides for SIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.