Abstract
This paper describes for the first time the electrochemical properties of redox-active self-assembled films of single-walled carbon nanotubes (SWCNTs) coordinated to cobalt(II)tetra-aminophthalocyanine (CoTAPc) by sequential self-assembly onto a preformed aminoethanethiol (AET) self-assembled monolayer (SAM) on a gold electrode. Both redox-active SAMs (Au-AET-SWCNT and Au-AET-SWCNT-CoTAPc) exhibited reversible electrochemistry in aqueous (phosphate buffer) solution. X-ray photoelectron spectroscopy (XPS) confirmed the appearance on the gold surface of the various elements found on the SAMs. Atomic force microscopy (AFM) images prove, corroborating the estimated electrochemical surface concentrations, that these SAMs lie normal to the gold surface. Electrochemical impedance spectroscopy (EIS) analyses in the presence of [Fe(CN) 6] 3−/4− as a redox probe revealed that the Au-AET-SWCNT-CoTAPc showed much lower (∼10 times) electron-transfer resistance ( R et) and much higher (∼10 times) apparent electron-transfer rate constant ( k app) compared to the Au-AET-SWCNT SAM. Interestingly, a preliminary electrocatalytic investigation showed that both SAMs exhibit comparable electrocatalytic responses towards the detection of dopamine in pH 7.4 phosphate buffer solutions (PBS). The electrochemical studies (cyclic voltammetry (CV) and EIS) prove that SWCNT greatly improves the electronic communication between CoTAPc and the Au electrode surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.