Abstract

Diabetes is one of the leading causes of death globally as per World Health Organization 2019. To cope up with side effects of current diabetes therapy, researchers have found several novel targets for the treatment of diabetes. Currently, dipeptidyl peptidase IV (DPP IV) has emerged as a target in modulating the diabetes physiology. In the present work, various 3D-Quantitative structure activity relationship (QSAR) techniques namely comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis, topomer CoMFA and molecular hologram QSAR are used to explore the structural requirements of triazole derivatives as DPP IV inhibitors. Different models generated by 3D QSAR studies had acceptable statistical values for further prediction of molecules. From the contour maps of QSAR results, important structural features are deduced. Substitutions on N1 and N2 of triazole ring with H-bond donor group enhances the biological activity. Aliphatic side chain, less bulky group, H-bond donor group and –COOH group on N3 of triazole ring are vital for the DPP IV inhibition. Moreover, electron withdrawing side chain on the triazole ring improves the biological activity. Further, novel triazole derivatives were designed and docking results of these compounds proved the efficiency of the developed 3D QSAR model. In future, results of this study may provide promising DPP IV inhibitors for the treatment of diabetes. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.