Abstract

Halogen-bonding, a noncovalent interaction between a halogen atom X in one molecule and a negative site in another, plays critical roles in fields as diverse as molecular biology, drug design and material engineering. In this work, we have examined the strength and origin of halogen bonds between carbene CH₂ and XCCY molecules, where X = Cl, Br, I, and Y = H, F, COF, COOH, CF₃, NO₂, CN, NH₂, CH₃, OH. These calculations have been carried out using M06-2X, MP2 and CCSD(T) methods, through analyses of surface electrostatic potentials V S(r) and intermolecular interaction energies. Not surprisingly, the strength of the halogen bonds in the CH₂···XCCY complexes depend on the polarizability of the halogen X and the electron-withdrawing power of the Y group. It is revealed that for a given carbene···X interaction, the electrostatic term is slightly larger (i.e., more negative) than the dispersion term. Comparing the data for the chlorine, bromine and iodine substituted CH₂···XCCY systems, it can be seen that both the polarization and dispersion components of the interaction energy increase with increasing halogen size. One can see that increasing the size and positive nature of a halogen's σ-hole markedly enhances the electrostatic contribution of the halogen-bonding interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call