Abstract

Matrix protein 2 (M2) and matrix protein 1 (M1) of the influenza B virus are two important proteins, and the interactions between BM2 and BM1 play an important role in the process of virus assembly and replication. However, the interaction details between BM2 and BM1 are still unclear at the atomic level. Here, we constructed the BM2-BM1 complex system using homology modelling and molecular docking methods. Molecular dynamics (MD) simulations were used to illustrate the binding mechanism between BM2 and BM1. The results identify that the eight polar residues (E88B, E89B, H119BM1, E94B, R101BM1, K102BM1, R105BM1, and E104B) play an important role in stabilizing the binding through the formation of hydrogen bond networks and salt-bridge interactions at the binding interface. Furthermore, based on the simulation results and the experimental facts, the mutation experiments were designed to verify the influence of the mutation of residues both within and outside the effector domain. The mutations directly or indirectly disrupt interactions between polar residues, thus affecting viral assembly and replication. The results could help us understand the details of the interactions between BM2 and BM1 and provide useful information for the anti-influenza drug design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.