Abstract
Xanthomonas oryzae pv. oryzicola is an X. oryzae pathovar that causes bacterial leaf streak in rice. In this study, we performed functional characterization of a nine-gene his operon in X. oryzae pv. oryzicola. Sequence analysis indicates that this operon is highly conserved in Xanthomonas spp. Auxotrophic assays confirmed that the his operon was involved in histidine biosynthesis. We found that two genes within this operon, trpR and hisB, were required for virulence and bacterial growth in planta. Further research revealed that trpR and hisB play different roles in X. oryzae pv. oryzicola. The trpR acts as a transcriptional repressor and could negatively regulate the expression of hisG, -D, -C, -B, -H, -A, and -F. hisB, which encodes a bifunctional enzyme implicated in histidine biosynthesis, was shown to be required for xanthomonadin production in X. oryzae pv. oryzicola. The disruption of hisB reduced the transcriptional expression of five known shikimate pathway-related genes xanB2, aroE, aroA, aroC, and aroK. We found that the his operon in X. oryzae pv. oryzicola is not involved in hypersensitive response in nonhost tobacco plants. Collectively, our results revealed that two genes in histidine biosynthesis operon play an important role in the pathogenicity of X. oryzae pv. oryzicola Rs105.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.