Abstract
Currently, it is still lack of systematic and in-depth knowledge regarding the co-effect of carbon-based fractions and ash in the sorption behavior of biochars. Therefore, pristine wood-derived biochars (PBCs) produced at different temperatures and their corresponding de-ashed versions (DBCs) were used to determine the roles of carbon's morphological structure and ash in sorption of aromatic compounds (toluene, m-toluidine, and m-nitrotoluene) to biochars. The results showed that biochars produced at 300-400 °C (mainly uncarbonized organic matter, UCOM) and 900 °C (turbostratic carbon, TC) may have stronger partition effect and pore filling effect with π-π interaction, respectively, and thus have greater sorption coefficients (Lg Kd) than biochars produced at 600 °C (pyrogenic amorphous carbon, PAC), which are probably dominated by surface hydrophobic effect. Meanwhile, TC had a greater Lg Kd than UCOM at low adsorbate concentrations (Ce), but exhibited an opposite trend at high Ce. The Lg Kd values of DBCs are always greater than those of PBCs, indicating ash has an inhibitory effect on sorption of aromatic compounds to biochars. Furthermore, the role of ash in sorption behavior of PBCs would vary with solution pH. At a neutral pH, PBCs have the maximum sorption quantity for aromatic compounds due to the formed cation-π bond between cations of ash and aromatic compounds. However, the acidic pH enhanced the dissolution of cations in ash and the basic pH enhanced the hydroxylation of cations in ash. Therefore, both acidic and basic pH weakened the cation-π bond between ash and aromatic compounds and decreased the sorption of aromatic compounds on PBCs. The results suggest that de-ashed biochars with more UCOM or TC are effective sorbents for sequestration of aromatic compounds, and provide a well-designed method for improving the sorption efficiency of biochars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.