Abstract

The enhancement of H2O on the carbonation reaction of CaO with CO2 is now widely recognized in the calcium-looping systems. However, the microscopic origins of steam-enhanced reactions remain unclear. A new insight into this issue from the atomic level is provided. We performed molecular dynamics (MD) simulations using a recently developed ReaxFF reactive force field to study the role of H2O on the carbonation reaction of CaO for enhancing CO2 capture. First, the effects of H2O on the carbonation reaction of CaO with CO2 were investigated by MD simulations combined with thermogravimetric analysis (TGA) experiments. Our calculation results well-supported by the TGA experiments showed that H2O just enhances CaO carbonation at the diffusion-controlled stage, whereas there is little influence on the kinetic stage. Then, we analyzed the properties of ion/gas diffusion and the solid product layer to deeply understand the role of H2O in the diffusion-controlled stage. It was found that the ion/gas diffusion coul...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.