Abstract
Drought, heat, and their combined stress have increasingly become common phenomena in horticulture, significantly reducing chili production worldwide. The current study aimed to phenotype Akabare chili landraces (Capsicum spp.) in climate chambers subjected to drought and heat treatments during their early generative stage, focusing on PSII efficacy (Fv/Fm), net photosynthetic rate (PN), stomatal conductance (gs), leaf cooling, and biomass production. Six landraces were examined under heat and control conditions at 40/32 °C for 4 days and at 30/22 °C under drought and control conditions followed by a 5-day recovery under control conditions (30/22 °C, irrigated). Two landraces with higher (>0.77) and two with lower (<0.763) Fv/Fm during the stress treatments were later evaluated in the field under 55-day-long drought stress at the fruiting stage. In both treatments, stress-tolerant landraces maintained high Fv/Fm, PN, and better leaf cooling leading to improved biomass compared to the sensitive landraces. Agro-morpho-physiological responses of the tolerant and sensitive landraces during the early generative stage echoed those during the fruiting stage in the field. A climate chamber experiment revealed a 13.9 % decrease in total biomass under heat stress, a further 21.5 % reduction under drought stress, and a substantial 38.7 % decline under combine stress. In field conditions, drought stress reduced total biomass by 28.1 % and total fruit dry weight by 26.2 %. Tolerant landraces showed higher Fv/Fm, demonstrated better wilting scores, displayed a higher chlorophyll content index (CCI), and accumulated more biomass. This study validated lab-based results through field trials and identified two landraces, C44 and DKT77, as potential stress-tolerant genotypes. It recommends Fv/Fm, PN, and CCI as physiological markers for the early detection of stress tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.