Abstract

Cobamides are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life but only produced de novo by some bacteria and archaea. The "late steps" of the adenosylcobamide biosynthetic pathway are responsible for the assembly of the nucleotide loop and are required during de novo synthesis and precursor salvaging. These steps are characterized by activation of the corrin ring and lower ligand base, condensation of the activated precursors to adenosylcobamide phosphate, and removal of the phosphate, yielding a complete adenosylcobamide molecule. The condensation of the activated corrin ring and lower ligand base is performed by an integral membrane protein, cobamide (5' phosphate) synthase (CobS), and represents an important convergence of two pathways necessary for nucleotide loop assembly. Interestingly, membrane association of this penultimate step is conserved among all cobamide producers, yet the physiological relevance of this association is not known. Here, we present the purification and biochemical characterization of the CobS enzyme of the enterobacterium Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, investigate its association with liposomes, and quantify the effect of the lipid bilayer on its enzymatic activity and substrate affinity. We report a purification scheme that yields pure CobS protein, allowing in vitro functional analysis. Additionally, we report a method for liposome reconstitution of CobS, allowing for physiologically relevant studies of this inner membrane protein in a phospholipid bilayer. In vitro and in vivo data reported here expand our understanding of CobS and the implications of membrane-associated adenosylcobamide biosynthesis.IMPORTANCESalmonella is a human pathogen of worldwide importance, and coenzyme B12 is critical for the pathogenic lifestyle of this bacterium. The importance of the work reported here lies on the improvements to the methodology used to isolate cobamide synthase, a polytopic integral membrane protein that catalyzes the penultimate step of coenzyme B12 biosynthesis. This advance is an important step in the analysis of the proposed multienzyme complex responsible for the assembly of the nucleotide loop during de novo coenzyme B12 biosynthesis and for the assimilation of incomplete corrinoids from the environment. We proposed that cobamide synthase is likely localized to the cell membrane of every coenzyme B12-producing bacterium and archaeum sequenced to date. The new knowledge of cobamide synthase advances our understanding of the functionality of the enzyme in the context of the lipid bilayer and sets the foundation for the functional-structural analysis of the aforementioned multienzyme complex.

Highlights

  • Cobamides are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life but only produced de novo by some bacteria and archaea

  • Given that all genomes of cobamideproducing bacteria and archaea sequenced to date contain cobamide (59 phosphate) synthase (CobS) homologues, we propose that the late steps of cobamide biosynthesis are catalyzed by a multienzyme complex (i.e., CbiB, CobU, CobT, CobC, and CobS) associated with the cell membrane

  • It is unclear what is the positive selection for the use of the cell membrane in the synthesis of cobamides, but the selection is strong enough to be maintained throughout evolution

Read more

Summary

Introduction

Cobamides are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life but only produced de novo by some bacteria and archaea. The importance of the work reported here lies on the improvements to the methodology used to isolate cobamide synthase, a polytopic integral membrane protein that catalyzes the penultimate step of coenzyme B12 biosynthesis. This advance is an important step in the analysis of the proposed multienzyme complex responsible for the assembly of the nucleotide loop during de novo coenzyme B12 biosynthesis and for the assimilation of incomplete corrinoids from the environment. Cbas were shown to serve as a light sensor associated with a transcription factor used to regulate gene expression (9)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call