Abstract

Chondroitin sulfate methacrylate (CS-MA) is a semisynthetic biopolymer increasingly used for the fabrication of chemical hydrogels. In this study, the methacrylation reaction of native CS was carried out with glycidyl methacrylate in dimethyl sulfoxide and optimized to obtain tunable and reproducible methacrylation degrees in a short reaction time. The methacrylation reaction was deeply characterized by mono- and bi-dimensional (1D, 2D) NMR spectroscopy of CS-MA derivatives with different methacrylation degrees. In contrast to what previously reported in the literature, HSQC, HMBC and TOCSY analyses revealed that the methacrylation reaction proceeds via both epoxy ring-opening and transesterification, involving predominantly the primary hydroxyl groups of CS, while preserving sulfate and carboxyl groups of the biopolymer. These findings are of fundamental importance for appropriate and rational design of CS-MA-based biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.