Abstract
ABSTRACT The water purification performance of grassy swales for treating stormwater road runoff was evaluated using a simulated experimental device in two different seasons. The results showed that the removal rates for total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) reached 89.90%, 56.71%, 32.37%, and 19.67%, respectively, in summer, and 34.09%, 7.75%, 56.71%, and 13.33%, respectively, in winter, suggesting that grassy swales showed higher water purification performance in summer than in winter. Soil filtration in grassy swales also showed high removal rates of TSS, COD, TN and TP in summer (98.13%, 59.10%, 33.82%, and 24.59% respectively). The structure, composition and source of dissolved organic matter (DOM) were investigated using ultraviolet visible (UV–Vis) spectra and fluorescence spectra. The spectral parameters indicated a relatively high humification and aromaticity of DOM, and a relatively higher contribution of organic matter derived from microbial substances in summer than in winter. In addition, grassy-swale treatment showed a slight decrease in metal-ion concentrations at the surface, while the removal rates in the bottom samples were 38.42%, 40.59%, 33.81%, and 40.06% for Cu2+, Cd2+, Pb2+, and Zn2+, respectively. The results of 2D-COS suggested that grass swales treatment can change the binding sites and binding sequencing of DOM with heavy metals and further influence the metal speciation, mobility and biotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.