Abstract
Preparation of carbonaceous catalysts by doping with boron (B) is one of the most promising strategies for substitution of toxic transition metal catalysts in advanced oxidation processes. This study was dedicated to reveal the intrinsic structure-performance relationship of peroxomonosulfate (PMS) activation by B-doped carbon nanotubes toward catalytic oxidation of pollutants. Performance tests showed the catalyst realized more than 95% phenol removal at pH 7 in 1 h and 69.4% total organic carbon removal. The catalysts were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Characterization results indicated that the topography of carbon nanotube was not significantly changed after B doped, while the defect sites increased from 1.05 to 1.23. The newly formed active sites may be presented in the form of C3B, CBO2 and CBO3, and reactive oxygen species (ROS) including OH, SO4−•, O2−• and 1O2 might be generated after activation by the active sites. Furthermore, B-MWNT-PMS∗ was also be detected by In-situ Raman, confirming the non-radical pathway and electron transfer mechanism. Beside of phenol, the reaction system of B-MWNT/PMS also can remove methylene blue, bisphenol S and diuron at pH = 7, confirming the universality and promising of this advanced oxidation technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.