Abstract

Layer-bound arrays of polygonal compaction faults have long been considered as important migration routes for hydrocarbon fluids leaking to the surface across thick shale sequences. A classic example is the deep offshore of the Lower Congo Basin where numerous fluid-venting structures are present above a Pliocene polygonal fault system. In this paper we present a detailed seismic analysis of a newly recognised system of Quaternary-aged Linear Chimneys and their intersection geometries with pre-existing Pliocene-aged polygonal faults (PF). Most (73%) of the 209 chimneys analysed intersect the lower portions of polygonal faults and almost half of these are rooted in strata below the PF interval. This indicates that fluid (in this case gas) migrated vertically, cross-cutting polygonal faults as it ascended through the tier. This is a strong indicator that PFs did not provide viable migration pathways otherwise chimneys would terminate at the upper tip of the fault, which would be the most likely migration exit point. Only twice in the whole system of Linear Venting Systems did this occur. A sub-set of chimneys stems from or above PF planes but these are restricted to either the lower footwall or from the apex area of hanging wall. At best they are evidence of fluids migrating up the lower part of polygonal faults and exiting deep within the tier, then migrating through most of the tier in their own vertical leakage vents. These results provide strong indicators that at least within this part of the Lower Congo Basin polygonal faults were the least effective/favoured migration pathway and that it was more energy-efficient for migrating gas to hydrofracture its fine-grained overburden than to re-open polygonal faults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call